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A formula is derived which gives the optimum placement of mesh points in the sense of 
minimizing the error in energy for a given number of degrees of freedom. The wave function 
is assumed to be given in a finite difference or finite element representation with polynomial 
completeness to an arbitrary but fixed degree. The result depends explicitly on the wave func- 
tion, the kinetic energy operator, and the degree of polynomial completeness for the represen- 
tation but does not depend explicitly on the potential, even in the presence of a Coulomb 
singularity. The optimum mesh predicted here for the hydrogen atom is compared to the 
widely used Herman-Skillman mesh. A l-dimensional example is given in which the 
calculated error in energy displays a sharp minimum at the predicted optimal mesh density. 
The critical role of reproducing the analytic structure of the solution is illustrated with an 
additional example in one dimension. The hydrogen 1s wave function is considered as a 
3-dimensional problem, and an optimal mesh density is calculated. A singular mesh density 
is required to account for the cusp while retaining the convergence properties of the basis set. 
A few percent of the available degrees of freedom are devoted to the description of the wave 
function cusp in the optimal mesh. 0 1989 Academic Press, Inc. 

1. INJ~~~DUCT~~N 

The numerical solution of the Schrodinger equations has been a subject of study 
since the work of Hartree [ 11. Computer solutions of atomic energy levels using 
Slater’s X-a approximation [2] were performed extensively by Herman and 
Skillman [3] in the early 1960s. Owing to the change in the natural scale length 
for the wave functions as a function of distance from the nucleus, Herman and 
Skillman adopted a mesh whose step size doubles at certain pre-determined internal 
locations. While practical, no claim is made for optimality in this approach which 
in any event is not critical for the atomic problem. 

Larger systems are typically treated with a basis set. Molecules are usually 
treated with Gaussian orbitals [4], whereas for solid state problems, plane waves 
are often employed with norm-conserving pseudopotentials [S], or with an addi- 
tional angular-momentum basis set near the nuclei [6]. The successes of these 
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methods are numerous [7]. However, in evaluating their limitations, it is often dif- 
ficult to disentangle the issues of the quality of the numerical approximations, the 
quality of the pseudopotentials, and the limitations of the local density approxima- 
tion (LDA) itself [8]. 

Quite recently, some workers have begun pilot investigations using the finite ele- 
ment method in the description of electronic structure [9-143 and reactive scatter- 
ing [ 15, 161 problems. With a finite element basis, one may arrive at a numerical 
scheme in which the time to find a wave function grows linearly in the number of 
basis functions retained through the use of multigrid techniques [ 171. Recent 
advances in numerical techniques, have permitted pseudopotential-based plane 
wave calculations to perform nearly this well [S, 183. A finite element basis allows 
a fine variation of the spatial density of the degrees of freedom which may permit 
all electron calculations or the use of deep local pseudopotentials on systems of sub- 
stantial size. One hope is that highly converged properties such as energies, may 
become available through the use of finite elements. Another motivation for intro- 
ducing finite elements into quantum mechanical calculations is to treat finite and 
extended systems on the same footing. 

The number of finite element basis functions required for a realistic electronic 
structure calculation presently required is sufficiently large to represent an obstacle 
in the practical realization of this method. This work addresses that issue by 
providing an explicit formula for an optimal mesh point placement for electronic 
structure problems in the sense of minimizing the energy. Some l-dimensional 
examples are given to demonstrate the validity of the formula and to gain insight 
into its implications for a general electronic structure calculation. Through optimal 
or near-optimal mesh point placement, the convergence rate of the energies as 
function of the basis set size can avoid the degradation in accuracy that the wave 
function cusp at the nucleus would impose if a uniform mesh were used. Rapid 
convergence for the energies is not only important in its own right, but also 
necessary to ensure the quality of the wave function for the purpose of computing 
expectation values of unbounded operators, such as the dipole or higher moments 
of the charge distribution [19]. 

2. VARIATIONAL OPTIMIZATION OF MESH DENSITY 

Let p(r) be the number density of mesh points at a given point of space, where 
the number of mesh points is taken as sufficiently large so that a continuum 
description is appropriate. The mesh density is constrained by the total number of 
mesh points in the space M, i.e., 

s dr p(r) = M. (2.1) 

Suppose we wish to minimize some functional of p(r) 

Z= i dr E(r) f(p(r)), (2.2) 
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where f(p) is some positive function for which the inverse of its derivative (f’-‘) 
exists and s(r) is another positive function referred to as the “penalty function.” To 
minimize Z subject to the constraint of Eq. (2.1) we introduce the Lagrange 
multiplier 1 and minimize the modified functional 

with respect to variations in the function p and the scalar 1. 
In general, this minimization yields 

p(r)=f’-’ - -& , ( > 
where 3, is determined from this expression and Eq. (2.1). If f(p) = p -OL, then 

ll(~+ 1) 
p(r) = A4 f ;fy(r)l,(.+ 1)’ (2.5) 

As indicated below, a will be related to the truncation error of the representation. 
A penalty function for which j dr s(r)“(‘+i) is unity is said to be “normalized.” The 
problem of a variationally determined mesh has been discussed elsewhere for a 
variety of cases [20]. i 

In a typical solution to the Schrodinger equation, several orbitals are determined 
on the same mesh. It is reasonable (but not necessary) to require that the penalty 
function s(r) be given by the sum of the normalized penalty functions associated 
with the individual orbitals. In the case where the mesh densities pi(r), . . . . Pk(r) are 
known for a set of k orbitals, the total mesh density will be given by the combina- 
tion rule 

(Cf= 1 pi(r)‘+ l)“(or+l) 
AJr) = M J &(Cf=, pi(r)“+ 1)1/b+ 1)’ (2.6) 

For large a, this combination rule is nearly the same as choosing the maximum p 
at each point in space, then renormalizing. 

3. AN OPTIMAL MESH DENSITY 

For the Schrijdinger equation, let e(r) be the best solution which is representable 
by a given basis set, and let $o(r) be the exact normalized solution with energy E,,. 
Define the error term 6+(r) by 

WI = Go(r) + W(r), (3.1) 
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and note the orthogonality condition (tiO 1 S$) = 0. 
quotient for IC/(r) from the exact energy E, is given by 

Deviation of the Rayleigh 

fiE=E-E,=(*I H-Eol+) 
(ti I *> 

= (St)1 H-E, ISlc/> + O(bt,b4). (3.2) 

Suppose the function e(r) has an expression in terms of a finite element basis set 
with polynomial completeness through order N. Suppose further that t,Qo(r) is dif- 
ferentiable through at least Nth order, except at isolated points (i.e., Coulomb 
singularities). Decomposing H = T + V into the usual kinetic energy and potential 
terms, the discussion of Strang and Fix [21] may be specialized to say 

and 

<WI V-E, 16~)~C,h2’N+1)(IC1012N+1. (3.4) 

Here, h is the scale length for the size of the individual finite elements, and CT and 
C, are constants which may depend on H, E, p(r), and the discretization rule [22], 
but not on h; )tiOIN+ 1 is the seminorm defined by 

I*ol;+l= C j dr IDB1~~~Bd+O(r)12, (3.5) 
IpI=N+l f2 

where D is the domain of integration, d is the dimension of the space, and D is 
the partial differential operator defined by D ~L”.fld= albl/(abl _. . afld) with IfiI = 

/?I+ ..* + Pd. All derivatives of order exactly N + 1 are included in the summation. 
Attention is directed to minimizing the error in kinetic energy, as it will always 
dominate for sufficiently small h. Remarkably, the presence of isolated singularities 
in the exact solution tie(r) will not affect the estimates of the rate of convergence 
of the matrix elements in Eqs. (3.3) and (3.4) if the mesh is sufficiently dense near 
the singularities [ 23 1. 

Consider the division of the total region of integration into small domains 
Q, . ..sZ. for some large integer K. The error in the kinetic energy (Eq. (3.3)) for 
each locally defined domain is given by the seminorm Eq. (3.5) for which the region 
of integration L2, is small, and hence given approximately by the integrand of 
Eq. (3.5). Hence, to the extent that the error bound given by Eq. (3.3) is optimal, 
the choice of the penalty function 

c(r) = c lDB’.‘.BdJ/O(r)12 
IpI=N+l 

(3.6) 

is also optimal. The associated error is O(/Z~~), so h2”‘=f(p). Since p(r) -/~(r)-~, 
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gg- 2N’d, i.e., a = 2N/d. This set of choices leads to the mesh density via 
. . 

h&r) N ( c ,~B1...R~~~(r),2)1'(2~'d+1). (3.7) 
If?I=N+l 

In one dimension, the sum reduces to the single term 

PO&) N 2g Jlo(x) 1 lAN+ 1’2). (3.8) 

Although the optimum mesh density depends explicitly on the solution, a coarse- 
grained solution suffices to estimate popt. Strategies are emerging to solve equations 
on a solution-dependent mesh in two or three times the time required for obtaining 
the solution on a mesh which is fixed in advance [24,25]. 

4. ONE-DIMENSIONAL EXAMPLES 

Herman-Skillman Mesh 

It is interesting to compare the result of Eq. (3.8) to the mesh employed in the 
extensive atomic calculations of Herman and Skillman. Consider the ground state 
solution to the hydrogen radial equation (u(r) = @Jr)) 

u(r) = re-‘, (4.1) 

where atomic units are used. Application of Eq. (3.8) leads to the (unnormalized) 
mesh densities 

popt(r)- Ir- (N+ 1)11/(N+1/2) e-rl(N+‘P). (4.2) 

Herman and Skillman [3] employed the Numerov method [26], for which N= 5. 
The Herman-Skillman mesh is roughly logarithmic between its starting and ending 
points. Equation (4.2) is well defined at the origin and integrable over the full range 
0 to co. Thus Eq. (4.2), combined with a simple discretization rule [22], will 
provide a definite prescription for the location of the outermost mesh point for a 
given total number of allowed points. 

Figure 1 compares the Herman-Skillman mesh for the hydrogen atom and the 
result stated in Eq. (4.2). Herman and Skillman wished to use the same mesh for 
all atomic orbitals (except for a scale factor of Z113), hence they required the addi- 
tional mesh points at small r and large radii for certain orbitals. Thus their mesh 
density must necessarily fall below our Is-derived p(r) at intermediate r. To model 
a typical heavy atom, optimal meshes were found from Eq. (3.8) for the four lowest 
s states of the hydrogen atom. The meshes were combined using the rule of 
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FIG. 1. Mesh density for the hydrogen atom as a 1D problem. The mesh density is normalized to 
j: dr p(r) = 1. Dotted curve is the Herman-Skillman mesh [3]. Dashed curve is normalized optimum 
formula for the hydrogen 1s orbital described by the Numerov method (Eq. (4.2) with N=5). The 
dash-dot curve is the analogue for the hydrogen 4s orbital. The mesh densities for the 2s and 3s orbitals 
generally lie between the curves associated with 1s and 4s orbitals, but are suppressed for clarity. The 
solid curve is the optimum mesh formula based on a combination of the first four hydrogen s-orbitals. 

Eq. (2.6) to obtain the solid line in Fig. 1 which agrees well with the empirically 
optimized Herman-Skillman mesh. The major discrepancy for small r may be 
understood by noting that in heavy atoms the effective charge is larger in the core 
than the valence region, hence the range of scale lengths to be treated is somewhat 
larger than for hydrogen. 

b-Functional Potential 

The potentially critical role that mesh point optimization may play in a practical 
calculation is illustrated by a numerical experiment. The eigenvalues are found for 
an exponential wave function arising from a b-function potential. In the case 
considered, the wave function was confined to a box with walls at + lOa, and an 
attractive potential in the center of sufficient strength so that the ground state 
energy was - 1 Ry. The ground state wave function 

Il/o(x) = e-IX1 (4.3 1 

is associated with the mesh density function 

p,,t(x) = ,-lxl/W+ l/Z). (4.4) 

This optimal expression may be generalized to 

&) = e-lxl/xo (4.5) 
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FIG. 2. Eigenvalue excess (LIE) for exponentially decaying wave functions in one dimension versus 
exponential parameter (x0) for mesh density function. Solid curve is for N = 3, and dotted curve is for 
N = 1. Vertical bars represent predicted optimal values. 

to introduce a parameter (x0) which is expected to achieve an optimal value at 
x0 = N + 4. Energy eigenvalues were found for a finite element calculation using 
linear Hermite polynomials (for which N = 1) and cubic Hermite polynomials (for 
which N= 3) [27]. Figure 2 illustrates the error in energy for N= 1 with 199” of 
freedom and N = 3 with 28” of freedom. It is seen that the calculated excess in the 
energy eigenvalue has a sharp minimum at the predicted optimal mesh density 
(i.e., x0 = $ and $, respectively). 

Square- Well Potential 

We studied approximations to the lowest eigenstate in a one dimensional square- 
well potential of length nag. The exact wave function is proportional to sin x with 
an eigenvalue of 1 Ry. We considered finite element solutions for N = 1 elements 
with 100” of freedom and for N = 3 with 16” of freedom. The meshes were taken to 
be in the forms (sin xja, lcos xla, and [sin 2x1’. (The uniform mesh is the a = 0 limit 
in all cases.) The first form is densest in the middle where the wave function is 
largest, the second at the edges where the slope of the wave function is largest, and 
the third is maximal where the product of slope and value is maximal. Equation 
(3.8) predicts that the form [sin xla is the optimal form for odd N. We observed that 
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the (sin xl@ mesh lowered the eigenvalues compared to the uniform mesh for all 
exponents studied, namely CI = 0 to 1, with a quadratic minimum appearing near 
the predicted value. Results are reported in Table I. The other two forms of the 
mesh density always yielded energies higher than the uniform value, with the 
lcos xla mesh yielding a worse estimate than the Isin 2x1” mesh for equal value of 
u. A monotonic increase with a was observed in both cases. The form of the optimal 
mesh is correctly predicted by Eq. (3.8). The modest discrepancy in the optimal 
value for the N= 3 case may be due to the fact that Eq. (3.8) was derived on the 
assumption of a large number of intervals, whereas only a few (8) are used here. 
The energy at the predicted optimal value is within 10% of the observed optimum, 
as reported in the table. (Since the finite element method is variational, the 
calculated eigenvalues must lie above the exact value.) Although the improvements 
in this example are modest, it is instructive that the present theory correctly 
predicts optimization is possible even in the absence of a variation in the potential. 
A theory which predicts an optimized mesh only from the potential [28], however 
meritorious it may be in other ways, would not be capable of making such a 
prediction. 

Effect of a Cusp 

In the example of the a-function potential, care was taken to place one of the 
N= 1 mesh points at the singularity in the potential and a very small interval was 
centered at the singularity in the N = 3 case. This is necessary to ensure the basis 
set is capable of correctly reproducing the analytic behavior of the solution (i.e., a 
cusp) at the singularity. In Fig. 3, the role of the failure to reproduce analytic 
behavior is illustrated. We present the results of calculations for the eigenvalue 
excess in the case of the uniform mesh for the square well and for the b-function 
potential. In the case of the square well, the eigenvalue excess is seen to decline as 
n -* for N = 1 and as nP6 for N = 3 where n is the number of degrees of freedom 
(i.e., the number of mesh points for N = 1, and twice the number of mesh points for 
N = 3, which has two functions per node). The functional form of this decline is 

TABLE I 

Optimal Mesh for a Uniform Potential 

N=l N=3 

Mesh a dE( 10-3) Lz LLE(10-7) 

Uniform 0 3.2 0 1.15 
Observed optimal 0.65 2.4 0.31 0.72 
Predicted optimal 3 2.4 4 0.78 

Note. Results of a computer experiment on mesh optimization. The functional form of the mesh den- 
sity is [sin xl=. LIE is the computed excess energy at the corresponding value of a; the exact eigenvalue 
is unity. The results for N= 1 had 100” of freedom, and the N= 3 results had 16” of freedom. 
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FIG. 3. Eigenvalue excess (AE) versus number of degrees of freedom (n) for various cases. Dotted 
lines are for the square-well problem; solid lines are for the d-function potential with a mesh point at 
the singularity; chain dotted lines are for the a-function potential without a mesh point at the singularity. 
The results are for N = 1 and N = 3 as indicated on the figure. 

suggested theoretically and required for the argument of Section 3. When the 
uniform mesh is applied to the b-function problem, the eigenvalue excess is seen to 
decline as n-1 for N= 1 when no mesh point is placed on the singularity and with 
the same rate N= 3 regardless of whether or not a mesh point is placed on the 
singularity. However, for N = 1 with a mesh point at the singularity, the full .-* 
behavior is observed. Only in this case is the approximate function free to have a 
discontinuity in slope just where the exact solution does; i.e., it has the correct 
analytic behavior. In the cases in which the slope discontinuity is not taken into 
account, i.e., mismatched function forms and no mesh grading, the rate of 
convergence is seen to be slow and independent of the order of the approximating 
polynomials. 

5. EFFECT OF A NUCLEAR CUSP 

The nuclear cusp poses a formidable obstacle to the calculation of 3-dimensional 
wave functions regardless of the numerical or physical approxiamtions chosen. The 
problem manifests itself in the present context as follows: in the finite element 
method, polynomials up to some specified degree (N) may be lit exactly. The 
(prototypical) hydrogen 1s wave function 

$dr) = e-’ (5.1) 

may not be easily approximated by polynomials near the origin, as it depends upon 
r = (x2 + y* + z*)‘/*. The use of a uniform mesh under these circumstances would 
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cause a substantial sacrifice of the convergence properties: convergence in energy 
would be limited to O(h3/*) regardless of the choice of N rather than 0(/z*“) which 
would obtain if the wave function were non-singular [29]. With appropriate mesh 
grading, the more rapid convergence is achieved. Application of Eq. (3.7) to tilS, 
followed by spherical averaging, leads to an expression of the form 

> 

~ 3/(2N + 3) 

, (5.2) 

for some coeficients ck. Values for ck are given in Table II for iV up to 5, and the 
integrals of pop* are plotted in Fig. 4. For small r, popt has an integrable singularity 

(5.3) 

As N grows large, the mesh points are more concentrated at the nucleus and more 
mesh points are available at large radius. In the limit N-P co, the integrand mesh 
density diverges logarithmically near the nucleus. Recall that no singularity in mesh 
density was introduced for the atomic problem considered in Section 4; the cusp 
arising from the nuclear charge is hidden when the hydrogen wave function is 
described in terms of the variable r, which is not an analytic function of x, y, 
and z. 

In practice, finite element calculations proceed with relatively low order elements. 
Typically N is chosen to be in the range 1 to 3, although N at least as large as live 
has been used in electronic structure calculations [ 111. Figure 4 suggests that 
devoting l-5 % of the mesh points to the cusp region (say r < 0.1) is sufficient to 
prevent the non-analytic behavior at the nucleus from dominating the convergence 

TABLE II 

Optimal Mesh Coefficients for the Hydrogen Atom as a 3D Problem 

N 1 2 3 4 5 

A 

co 
c, 
c2 
c3 
Cd 
C5 
C.5 
C, 
CS 
G 
Cl0 

25.191 412.86 648.82 
4 64 52 

-2 -78 -102 
9 267 363 

690 1416 
345 4164 

5184 
2592 

1797.9 
423 

-1286 
2875 

16506 
79293 

292512 
611136 
697320 
348660 

3697.1 
2224 

-9018 
16789 

117740 
733430 

3917040 
16879920 
49186500 
91604250 

100516500 
50258250 

Note. Coellkients are given for Eq. (5.2) for small N with ck = Ck/A. The optimal mesh densities are 
plotted in Fig. 3. The Ck are integers, but trailing zeroes are not significant figures for N=4- 5. 
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FIG. 4. Integrated normalized mesh density function for the hydrogen Is wave function treated as a 
3D problem versus radius. The function is determined by Eq. (5.2) with coefficients in Table I. Chain 
double dotted curve is for N = 5, chain dotted curve is for N = 4, solid curve is for N = 3, dashed curve 
is for N = 2, and dotted curve is for N = 1. 

properties of the solution process. Outside the cusp region, the finite element solu- 
tion is expected to be efficient. Beyond forcing the introduction of mesh grading, the 
nuclear cusp does not impose major computational costs. 

It is of interest to consider qualitatively the characteristics of optimal meshes for 
general atoms in molecules or solids. The innermost core electron is nearly 
hydrogenic, so the analysis given here applies to it. For the succeeding shells (i.e., 
2s and 2p and so on) the wave functions will show rapid variation in the region in 
which mesh points have been previously placed for inner shells, and a slow varia- 
tion over a larger spatial region. Each additional shell will require roughly the same 
number of additional mesh points as the innermost shell, suggesting the representa- 
tion of the full set of orbitals from an element such as copper or germanium will 
require only four times as many mesh points as the hydrogen 1s wave function. 
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